Sodium-lithium exchange in sarcolemmal vesicles from canine superior mesenteric artery.
نویسندگان
چکیده
Exchange of intracellular sodium for extracellular lithium readily occurs in vascular smooth muscle, but the mechanism of this exchange is not known. These studies examined whether a sodium-lithium countertransport system was present in the cell membrane of vascular smooth muscle. A sarcolemmal-enriched vesicle preparation was obtained from canine superior mesenteric artery via a magnesium aggregation and differential centrifugation technique. An outwardly directed gradient for lithium stimulated 22Na uptake by the vesicles, and an inwardly directed gradient for lithium stimulated 22Na efflux. These effects were not due to an alteration in membrane potential, and sodium uptake was not stimulated by lithium in the absence of a gradient for lithium. The lithium gradient-stimulated component of sodium uptake was not affected by a change in membrane potential and was insensitive to ouabain. Both sodium-lithium exchange and sodium-proton exchange in sarcolemmal-enriched vesicles were inhibited by two compounds that inhibit the sodium-lithium countertransport system in red cells, phloretin and quinidine. Ethylisopropylamiloride also inhibited both sodium-lithium exchange and sodium-proton exchange in the vesicles. In support of the possibility that sarcolemmal sodium-lithium exchange and sodium-proton exchange are mediated by a single cation exchange mechanism with affinity for sodium, lithium, and protons, we found that an inwardly directed sodium or lithium gradient stimulated proton efflux, and that the stimulation of sodium efflux by external lithium or protons was not additive. It is concluded from these studies that sarcolemmal vesicles from canine superior mesenteric artery contain an electroneutral, phloretin, quinidine, and ethylisopropylamiloride inhibitable sodium-lithium exchange transport system.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Sodium-lithium exchange and sodium-proton exchange are mediated by the same transport system in sarcolemmal vesicles from bovine superior mesenteric artery.
Several laboratories have reported that Na+-Li+ countertransport activities are increased in red blood cells from patients with essential hypertension. It has been proposed that the activity of this red blood cell transport system might reflect the activity of a similar system in vascular smooth muscle. We previously demonstrated Na+-Li+ exchange in sarcolemmal vesicles from canine artery and p...
متن کاملCanine cardiac sarcolemmal vesicles demonstrate rapid initial Na(+)-Ca2+ exchange activity.
To identify a rapid, uninhibited rate of exchange activity, we investigated in canine sarcolemmal vesicles the rapid kinetics of Na(+)-Ca2+ exchange. Sarcolemmal vesicles were incubated in 160 mM NaCl and 20 mM HEPES at 25 degrees C (pH 7.4) and actively loaded with 45Ca2+ for 2 minutes by Na(+)-Ca2+ exchange. After further uptake was inhibited by dilution into 0.15 mM Na(+)-free EGTA, sarcolem...
متن کاملDemonstration of a Na+/H+ exchange activity in purified canine cardiac sarcolemmal vesicles.
Purified canine cardiac sarcolemmal membrane vesicles exhibit a sodium ion for proton exchange activity (Na+/H+ exchange). Na+/H+ exchange was demonstrated both by measuring rapid 22Na uptake into sarcolemmal vesicles in response to a transmembrane H+ gradient and by following H+ transport in response to a transmembrane Na+ gradient with use of the probe acridine orange. Maximal 22Na uptake int...
متن کاملStimulation of Na+-Ca2+ exchange in cardiac sarcolemmal vesicles by proteinase pretreatment.
The Na+-Ca2+ exchange activity of purified canine cardiac sarcolemmal vesicles can be strikingly stimulated if the vesicles are pretreated with a serine or thiol proteinase. The Km (Ca2+) for Na+i-dependent Ca2+ influx is reduced from 22.2 +/- 2.3 to 8.1 +/- 0.3 microM while Vmax is increased from 15.1 +/- 3.6 to 18.9 +/- 5.2 nmol Ca2+ . mg protein-1 . s-1. Na+o-dependent Ca2+ efflux is also st...
متن کاملPhospholipid alterations in canine ischemic myocardium. Temporal and topographical correlations with Tc-99m-PPi accumulation and an in vitro sarcolemmal Ca2+ permeability defect.
Experimental myocardial ischemia produced in dogs by proximal left anterior descending coronary artery (LAD) ligation results in a small but measurable decrease in total phospholipid content in the subendocardium of the ischemic region. After 3 hours of fixed occlusion, there is a 10% decrease in total phospholipid content. Silica gel chromatography reveals this decrease to be reflected predomi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 62 3 شماره
صفحات -
تاریخ انتشار 1988